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ABSTRACT 

The wave damping in a rubble mound breakwater has been studied theoretically and 

experimentally. Various types of damping functions (linear, quadratic and polynomial) have been 

derived and checked against experimental results from large scale model tests. Damping 

coefficients have been derived from the hydraulic resistance of the breakwater core material. The 

result is a general approach for the wave decay inside a rubble mound breakwater that clearly 

reflects the flow processes inside the structure. 

 
INTRODUCTION 

While the main part of the incoming wave energy is reflected at the seaward face of a rubble 

mound breakwaters or dissipated at and inside the structure, some wave energy will pass through 

the breakwater and will cause wave disturbance at the lee side. The wave damping inside a 

breakwater and the wave transmission are a result of the turbulent, instationary and non-uniform 

porous flow inside the breakwater and thus difficult to quantify. Two-phase flow (air-water 

mixture) is further likely to occur in the seaward part of the structure. 

 

In this paper a relatively simple analytical method is presented for the assessment of wave height 

attenuation inside a rubble mound breakwater. The method has been derived theoretically and 

validated against experimental results from large scale model tests. The new method reflects the 

actual physical processes inside the breakwater more than existing approaches and proved to be 

more accurate. 

 
PREVIOUS WORK 

The hydraulic resistance I for instationary flow in coarse porous media can be approximated by the 

extended Forchheimer equation with an additional inertia term (POLUBARINOVA-KOCHINA, 1962): 
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where a, b and c are dimensional coefficients and vf is the flow velocity inside the porous medium 

(filter velocity). A set of equations and coefficients to determine the hydraulic resistance of a rigid 

homogeneous, isotropic porous medium for single phase flow is summarised in Table 1 and Table 2 

(for further details see MUTTRAY, 2000). 
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with: Kb non-dimensional coefficient (see Table 2) 
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with: KC Keulegan-Carpenter number (KC = Vf T /(n d)) 

 Vf velocity amplitude 

 T period of the oscillatory porous flow 
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Added mass coefficient (VAN GENT, 1993) 
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Table 1: Forchheimer resistance coefficients a, b and c for stationary and oscillatory flow 

 

Author Characteristic 

particle diameter 

Coefficients 

Ka Kb 

Kozeny (1927); Carman (1937) deq 180 – 

Ergun (1949, 1952) dn50 150 1.75 

Engelund (1953) deq – 1.8 – 3.6 

Koenders (1985) dn15 250 – 330 – 

den Adel (1987) dn15 75 – 350 – 

Shih (1990) dn15 > 1684 1.72 – 3.29 

Van Gent (1993) dn50 1000 1.1 

The equivalent diameter deq is the diameter of a sphere with mass m50 and specific density ρs of an 

average actual particle: deq = (6 m50 /π ρs)
1/3

 

The nominal diameter dn50 is the diameter of a cube with mass m50 and specific density ρs of an 

average actual particle: dn50 = (m50 /ρs)
1/3

 

Table 2: Empirical coefficients and characteristic particle diameters for the Forchheimer 

coefficients a and b (stationary flow) 

 

The wave propagation in a rubble mound breakwater has been investigated by HALL (1991, 1994) 

in small scale experiments and by BUERGER ET AL. (1988), OUMERACI & PARTENSCKY (1990) und 

MUTTRAY ET AL. (1992, 1995) in large scale experiments. Field measurements have been conducted 

at the breakwater at Zeebrugge (TROCH ET AL.\ 1996, 1998). 

 

The amplitude of the pore pressure oscillations inside the core increases with increasing wave 

height and wave period (OUMERACI & PARTENSCKY, 1990) while the rise time of the pressure 



oscillations remains almost constant (HALL, 1994). The pore pressure oscillations decrease in the 

direction of wave propagation. The damping of pore pressure oscillations increases with increasing 

wave height and decreases with increasing wave period (BUERGER ET AL., 1988; TROCH ET AL., 

1996). The following approach has been proposed by OUMERACI & PARTENSCKY (1990) for the 

variation of pore pressure oscillations in horizontal direction: 
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with dimensionless damping coefficient Kd, amplitude of pore pressure oscillations P0 (at position x 

= 0) and P(x) (at varying position x > 0) and wave length L' inside the structure. The exponential 

decrease has been confirmed in field measurements (TROCH ET AL., 1996). 

 
METHODOLOGY 

The wave height attenuation inside a rubble mound breakwater has been analysed theoretically. A 

simple universal concept for the wave height decay inside the structure is derived by means of 

some simplifying assumptions. The theoretical results have been validated experimentally. Large 

scale model tests have been performed with a rubble mound breakwater with a typical cross section 

in order to prevent scale effects and to ensure that the results are properly transferred to prototype 

conditions. Furthermore, the experimental results were required to quantify non-linear effects that 

had been neglected in the theoretical approach and to approximate them by empirical means. The 

objective is a simple and relatively accurate description of wave damping inside a rubble mound 

breakwater, which clearly reflects the governing physical processes. 

 

The analysis of the wave motion inside the breakwater is restricted to that part of the core, where 

the water surface remains inside the core during the entire wave cycle. Thus, only the breakwater 

core landward of the point of maximum wave run-up on the core is considered (see Figure 1) as 

further seaward the wave motion is affected by the breakwater slope. 

Figure 1: Definition sketch for the analysis of wave damping inside the breakwater core 

 

The wave height at the point of maximum wave run-up between the core and the filter layer is 

considered as the initial wave height H0. The core material is assumed to be homogeneous. It is 

further assumed that the wave damping inside the core at x ≥ x0 is not directly affected by the wave 



transformation at the seaward slope (except for the initial wave height H0). Thus, wave damping 

inside the breakwater core and the infiltration process at the slope are considered as two separate 

and successive processes. 

 
THEORETICAL WAVE DAMPING APPROACH 

The relationship between hydraulic gradient I and discharge velocity vf is determined by the 

extended Forchheimer equation (equation 1). The wave damping inside a rubble mound 

breakwater, which is closely linked to the hydraulic resistance, can be approximated by the 

following approaches that have been derived from the extended Forchheimer equation. 

 

The discharge velocity vf(x,z,t) is replaced by a depth averaged (z = 0  -h) and time averaged (t = 

0  T) velocity vm(x), which is approximated by (see also MUTTRAY, 2000): 
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with local wave height H(x), circular frequency ω = 2 π/T, internal wave number k' = 2 π/k’ 

(internal wave length L'), water depth h, porosity n and velocity coefficient κv [1/s]. 

 

An average hydraulic gradient Im(x) (averaged over water depth and wave period) corresponds to 

the average pressure gradient for constant water depth. The gradient Im(x) can be approximated by 

the gradient of the average height of the pressure oscillations Pm(x)/δx or by the gradient of the 

wave height Hm(x)/δx if the water surface and pressure oscillations are approximately sinusoidal 

and if their variation over the water depth is negligible (MUTTRAY, 2000). The hydraulic resistance 

Im(x) = f(vm) with vm according to equation 7, is thus described by: 
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which might result in a linear, quadratic or polynomial damping function. 

 

Damping functions for laminar flow (linear damping), fully turbulent flow (quadratic damping) and 

combined laminar and turbulent flow are derived in Table 3. The damping coefficients for linear 

and quadratic damping correspond to the Forchheimer coefficients a and b, respectively. A linear 

damping results in an exponential decrease of wave height. If turbulent and laminar flow both occur 

in different sections of the porous medium the hydraulic gradient is approximated by the sum of 

linear and quadratic resistance terms. 

 

A variation of the initial wave height H0 is associated with a corresponding variation of the local 

damped wave height H(x) only in the case of linear damping. In the case of quadratic damping a 

significant variation of the initial wave height H0 will after a certain distance cause only a very 

limited variation of the local wave heights H(x). A similar trend can be seen for the polynomial 

damping which of course depends on the relative importance of the quadratic resistance. 

 



 

Boundary condition 
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Local wave height: 
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Quadratic damping approach Fully turbulent flow 

Basic equation: 
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Polynomial damping approach Laminar and turbulent flow  

Basic equation: 
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Table 3: Linear, quadratic and polynomial damping functions 

 
EXPERIMENTAL INVESTIGATIONS 

The experimental set-up in the Large Wave Flume (GWK) in Hanover consists of a 1:50 foreshore 

of 100 m length and a rubble mound breakwater with typical cross section. The breakwater has 

1:1.5 slopes. The seaward slope is protected by an Accropode armour layer with a unit weight of 40 

kg. The underlayer consists of crushed rock (rock size 80/150 mm with an average weight of 1.95 

kg. The breakwater core has a crest width of 1.35 m and a crest height of 3.75 m (Figure 2). The 

core material consists of gravel (rock size 22/56 mm); the geometric properties of the core material, 

the resistance coefficients of the extended Forchheimer equation for an oscillating single phase 

flow and their contribution to the total flow resistance are summarised in Table 4 (for further details 

see van Gent, 1993 and Muttray, 2000). 

 

 Equivalent 

diameter 
Nominal diameter 

Rock size deq = 0.0385 m dn15 = 0.023 m dn50 = 0.031 m dn85 = 0.040 m 

Non-uniformity 1.51    

Porosity 0.388    

Hydraulic resistance Laminar Turbulent Inertia 

Forcheimer coefficient a = 0.89 s/m b = 22.9 s
2
/m

2
 c = 0.26 s

2
/m 

Contribution to total resistance 11% 83 – 87% 2 – 6% 

Table 4: Geometric properties of the core material, resistance coefficients and their contribution to 

the total flow resistance for oscillatory flow 

 

 



 

Figure 2: Cross section of the breakwater model with wave gauges and wave run-up gauges 

 

The wave motion inside the structure has been determined from the water surface elevations inside 

the core (wave gauges 22 – 26) and at the seaward slope on the armour layer, on the filter layer and 

on the breakwater core (wave run-up gauges 1 – 3). Modified wave gauges, which are protected by 

a cage against the surrounding rock material, have been applied for wave height and for wave run-

up measurements inside the structure. The position of wave gauges and wave run-up gauges can 

bee seen in Figure 2. Details of the data collection, processing and analysis can be found in Muttray 

(2000). 

 

A typical breakwater configuration has been tested in the GWK; the structural parameters 

(geometry and rock material) have not been varied with respect to the large model scale. The wave 

parameters and the water level have been varied systematically (see Table 5). The relative water 

depth h/L varies from 0.05 to 0.23 (kh = 0.35 to 1.45) and is thus transitional and close to shallow 

water conditions. The wave steepness H/L varies from 0.005 to 0.056 and the relative wave height 

H/h varies between 0.09 and 0.4. The range of surf similarity parameters ξ = tan[α/(H/L0)
1/2

] is 3.0 

to 16.7. 

 

Two water levels (h = 2.50 m and 2.90 m) have been considered. Wave overtopping was practically 

excluded from these tests in order to avoid any infiltration into the breakwater core from the 

breakwater crest. Therefore the maximum wave heights at water level h = 2.50 m and 2.90 m were 

limited to H = 1.0 m and 0.7 m, respectively. 

 

Tests have been conducted with regular waves and wave spectra. Regular wave tests give insight 

into the hydraulic processes and have been used for the validation of theoretical approaches as well 

as for empirical adjustments and extensions. Wave spectra have been tested to check the 

applicability of regular wave results for irregular waves. 



 

Water level 
Wave period Regular waves Wave spectra 

T, Tp Wave height Hs Wave height Hm0 

[m] [s] [m] [m] 

2.5 4, 5, 6, 8, 10 0.25 – 1.00 0.25 – 1.00 

2.9 3, 4, 5, 6, 8, 10 0.25 – 0.70 0.25 – 0.70 

Table 5: Test programme 

 
EXPERIMENTAL RESULTS 

The decrease of wave height inside the breakwater core is plotted in Figure 3 against the distance x 

– x0 (see Figure 1) for regular waves (wave period T = 4 s, 8 s, wave height H = 0.25 m, 0.40 m, 

0.55 m, 0.70 m and water level h = 2.50 m). The initial wave height H0 at position x0 varies 

significantly with the incident wave height (constant wave period). For shorter waves (T = 4 s) the 

wave height inside the breakwater core approaches after a relatively short distance a value that is 

almost independent of the initial wave height. Once this value is reached, the wave damping 

decreases significantly. A similar effect can be seen for longer waves (T = 8 s). A quadratic or 

polynomial damping approach appears to be more suitable for the wave height decay inside a 

breakwater than a linear damping approach. 

 

Figure 3: Variation of wave height inside the breakwater core with distance x – x0 for various 

incident wave heights and wave periods 

 

The applicability of the damping functions (equations 9, 10 and 11, Table 3) for the wave height 

attenuation inside the breakwater is addressed below. The velocity coefficient κv according to 

equation 7 is about 0.25 s
-1

 (with a standard deviation of 0.011 s
-1

 = 4.5%) for the wave conditions 

that have been tested. 

 

Linear damping: The coefficient a of the linear damping function (equation 9) is considered as a 

linearised resistance coefficient aeq and is therefore different from the linear hydraulic resistance 

coefficient a of the Forchheimer equation. The linearised resistance coefficient aeq can be 

approximately determined according to MUTTRAY (2000): 
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For this experimental investigations the coefficient aeq is about 2 in average (with coefficients a, b 

and c according to Table 1). The wave number k' inside the structure has been determined 

according to the linearised dispersion equation (see MUTTRAY, 2000): 
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An average wave height of H = 0.43 H0 has been considered. This wave height corresponds to the 

average height of waves with exponentially decreasing height that travel 3 m inside the structure 

(according to 9) if the wave height at the landward end of the core is neglected. 

 

The applicability of the linear damping approach (equation 9) for the wave decay inside the 

breakwater core is demonstrated in Figure 4. 

 

Figure 4: Linear wave damping approach: (a) wave decay for longer (T = 8 s) and shorter (T = 4 s) 

wave periods, (b) wave decay vs. relative distance κv x 

 

The differences between measured and calculated wave height decay (according to equation 9) are 

shown exemplarily for a number of tests with shorter and longer wave periods in Figure 4a (with a 

= 2 s/m and κv ≈ 0.25 s
-1

. The damping rate of longer wave periods (T = 8 s) is overestimated in the 

seaward part of the breakwater core while the damping rate of shorter wave periods (T = 4 s) is 

underestimated. 

 

The wave height evolution inside the core is plotted in Figure 4b against the relative distance κv x 

for all tests. It is obvious that the wave heights in the landward part of the breakwater core (κv x > 

0.6) are underestimated by this approach. The measured wave heights are in average 2.5% smaller 

than the calculated wave heights; the standard deviation is 0.028 m (18.2%). 

 

Even with the systematic deviations between calculated and measured wave heights it can be 

concluded that the linear damping approach (equation 9) provides a very simple and relatively 

accurate approximation for the wave damping inside the breakwater core. 

 



Quadratic damping: The applicability of the quadratic damping approach according to equation 

10 is shown in Figure 5. If the experimentally determined quadratic Forchheimer coefficient b = 

22.9 s
2
/m

2
 is applied as a damping coefficient the wave height inside the structure is underestimated 

in average by 16.3% with a standard deviation between measured and predicted wave heights of 

0.052 m (33.9%). As the quadratic damping coefficient b varies with the relative water depth ω
2
 h/g 

it has been empirically approximated by )/()/263( 50

2
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Figure 5: Quadratic wave damping approach: (a) wave decay for longer (T = 8 s) and shorter (T = 4 

s) wave periods, (b) wave decay vs. relative distance b κv
2
 H0 x. 

 

The differences between measured and calculated wave height decay (according to equation 10) are 

shown exemplarily for a number of tests with shorter and longer wave periods in Figure 5a. The 

wave decay is plotted against b κv
2
 H0 x. The damping coefficient b varies with ω

2
 h/g and thus the 

wave damping is different for long and short period waves. Generally, the quadratic damping 

function appears to be slightly closer to the actual wave damping than the linear approach (see 

Figure 4a). 

 

The wave damping inside the breakwater is plotted in Figure 5b against the relative distance b κv
2
 

H0 x for all tests. The wave heights in the seaward part of the structure are slightly underestimated 

while the wave heights in the landward part are slightly overestimated. The systematic deviation 

between measured and calculated wave heights is only 0.1%, the standard deviation is 0.032 m 

(21.1%). 

 

The wave decay inside the breakwater is qualitatively better reproduced by the quadratic damping 

function than by the linear damping model. However, the effect of wave length is not properly 

described by the velocity coefficient. This shortcoming will affect the results from the quadratic 

approach more than the results of the linear approach (κv is linear in equation 9 and quadratic in 

equation 10). Hence the scatter between measured and predicted wave heights inside the structure 

is larger for the quadratic approach than for the linear approach even though the physics of the 

wave damping process inside a breakwater are better described by the quadratic approach. The 

over-simplified velocity coefficient κv can be partly compensated by an empirical correction of the 

resistance coefficient b as a function of ω
2
 h/g. For the present case the relative standard deviation 

can be reduced from 33.9% to 21.1%. However, the general applicability of such a purely empirical 

correction is uncertain. 



 

Polynomial damping: The applicability of the polynomial damping approach according to 

equation 11 is shown in Figure 6. If the experimentally determined linear and quadratic 

Forchheimer coefficients a = 0.89 s/m and b = 22.9 s
2
/m

2
 are applied the wave heights inside the 

breakwater are underestimated in average by 8.0% with a standard deviation of 0.046 m (32.7%). 

In order to compensate the effect of wave length that is not sufficiently taken into account by the 

coefficient κv the quadratic damping coefficient b has been empirically approximated by 

)/('9 50ndghkb  . 

 

Figure 6: Polynomial wave damping approach: (a) wave decay inside the breakwater core, (b) 

comparison of measured and calculated local wave heights H(x) 

 

The wave decay inside the breakwater core (according to equation 11) is plotted in Figure 6a 

against the relative distance (a + b κv H0) exp(0.5 π a κv x) – b κv H0. The wave heights in the most 

seaward part of the structure are slightly underestimated by the polynomial approach while the 

wave heights further landwards are approximated very well. The calculated wave heights are in 

average 2.2% larger than the measured values and have a the standard deviation of 0.026m (16.8%) 

(Figure 6b). It can be concluded that the polynomial approach according to equation 11 (with an 

empirical adaptation of the quadratic resistance coefficient b) provides a good approximation of the 

actual wave height decay inside a breakwater. As for the quadratic approach (equation 10) the 

accuracy of the results is limited due to the fact that the coefficient κv  that does not cover the effect 

of wave length completely. 

 

Extended polynomial approach: In order to consider the effect of wave length on the wave 

damping properly an empirical coefficient κx is added to the polynomial damping approach 

(equation 11): 
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For regular and irregular waves the wave decay inside the breakwater core according to equation 14 

is plotted in Figure 7a and b. The experimentally derived Forchheimer coefficients a = 0.89 s/m and 



b = 22.9 s
2
/m

2
 (see Table 4) and an internal wave number k' that has been derived from the 

linearised dispersion equations (in the present case: k' ≈ k, for details MUTTRAY, 2000) have been 

applied. The following empirical coefficients κx have been used: 
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For regular waves the local wave heights inside the structure according to equation 14 are in 

average 0.6% larger than the measured wave heights, the standard deviation is 0.021 m (14.9%) 

(Figure 7). It can be seen that the actual wave height decay inside a breakwater core is well 

described by the extended polynomial approach (equation 14). 

 

Figure 7: Extended polynomial wave damping approach: (a) regular waves, (b) wave spectra 

 

For wave spectra the calculated wave heights inside the structure are in average 2.6% smaller than 

the measured wave heights, the standard deviation is 0.039 m (29.5%) (Figure 7b). The wave 

heights in the seaward part of the breakwater core are slightly overestimated while the wave heights 

further landwards are slightly underestimated. In some of the experiments with wave periods Tp = 5 

s, 6 s and 8 s the wave height measurements are distorted by "internal wave overtopping" (the wave 

run-up at the intersection between filter layer and core reaches the crest the breakwater and 

generates an additional water surface for the wave gauges in this part of the breakwater). It appears 

as if these waves were propagating a certain distance into the breakwater without significant 

damping. In all cases without "internal wave overtopping" the decay of significant wave heights 

Hm0 inside the breakwater can be reasonably assessed by equation 14 for irregular waves. 

 
CONCLUDING REMARKS 

A theoretical approach for the wave damping inside a rubble mound breakwater has been derived 

for a homogeneous core material. The wave kinematics are described by linear wave theory, the 

discharge velocity has been averaged (over wave period and water depth). The hydraulic gradient is 

approximated by the wave height gradient. The wave length inside the structure has been 

determined from a linearised dispersion equation for porous media, the effect of instationary flow 

has not been considered explicitly. The outcome is a linear model (for laminar flow), a quadratic 

model (for turbulent flow) and a polynomial model (for combined laminar and turbulent flow) for 

the wave height decay inside the breakwater. Despite these assumptions and simplifications the 



damping functions that have been derived reflect the governing physical processes better than 

available approaches such as equation 6. 

 

The wave damping inside the breakwater can be reasonably approximated by a linear damping 

model and the corresponding exponential decrease. However, the choice of the damping coefficient 

is a relatively difficult task. The Forchheimer coefficient a is not appropriate and has to be replaced 

by an equivalent linear damping coefficient aeq, which takes both laminar and turbulent losses into 

account and depends on the flow field inside the breakwater. 

 

A quadratic damping model with Forchheimer coefficient b as damping coefficient does not 

provide a significant improvement while a polynomial approach appears to be very promising. The 

latter is mainly advantageous due to the fact that Forchheimer coefficients a and b can be directly 

applied as damping coefficients in the polynomial model. As the polynomial damping model 

slightly underestimates the effect of wave length an empirical correction has been introduced. 

 

The extended polynomial damping model has been validated against results from regular and 

irregular wave tests. The new approach is applicable for porous media for which the hydraulic 

resistance can be approximated by the Forchheimer equation. The formulae are not restricted to a 

certain breakwater geometry or wave conditions. However, in the case of wave overtopping or 

"internal wave overtopping" (infiltration into the core from the breakwater crest) the pressure 

distribution inside the breakwater and the internal wave decay may differ significantly from the 

proposed models. 

 

The main tasks for future research are: 

 A more rational physically based justification for the empirical correction factor κx, which is 

very important to conclude on the general applicability the polynomial damping model; 

 Analysis of the internal flow field including air entrainments in case of wave overtopping; 

 Analysis of the hydraulic processes in the seaward part of the breakwater core that is directly 

affected by the wave transformation on the slope; 
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