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Abstract

Wave decay in a rubble mound breakwater has been analysed theoretically for vari-
ous types of damping functions (linear, quadratic and polynomial). The applicability
of these damping functions for wave decay in the landward part of the breakwater
core has been investigated in large scale model tests. The properties of the rock
materials that has been used in the model tests have been determined to provide a
rational basis for the damping coefficients. The analysis is based on detailed mea-
surements of wave conditions and pressure distributions inside the breakwater. The
theoretical approaches have been validated and where necessary extended by empiri-
cal means. The wave decay inside the breakwater can be reasonably approximated by
the commonly applied linear damping model (resulting in exponential wave height
attenuation). An extended polynomial approach provides a slightly better fit to
the experimental results and reflects more clearly the governing physical processes
inside the structure.
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1 Introduction, previous work and methodology

The main purpose of rubble mound breakwaters is dissipation of wave energy.
However a certain part of the incident wave energy will pass through the
breakwater core resulting in wave disturbance at the lee side of the breakwater.
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Wave transmission through a breakwater and wave damping inside a break-
water are highly complex processes. The porous flow inside a breakwater is
turbulent, non-stationary and non-uniform. In the seaward part of the break-
water, two–phase flow (air–water mixture) is likely to occur.

The wave induced pore pressure distribution inside a breakwater is not or only
to a minor extent considered in current design procedures. A revision of the
actual design procedures has been proposed by several authors in the past
decades (Bruun & Johannesson, 1976, for example). An improved breakwater
design shall include a due consideration of the pore pressure distribution with
respect to (i) slope failure analysis, (ii) optimised filter design and (iii) an
improved prediction of wave transmission, wave run-up and wave overtopping
as well as internal wave set-up (de Groot et al., 1994).

A relatively simple analytical method for the assessment of wave height at-
tenuation inside a rubble mound breakwater is presented in this paper. The
method has been derived theoretically and validated against experimental re-
sults from large scale model tests. The new method reflects the actual physical
processes inside the breakwater more than existing approaches and proved to
be more accurate.

1.1 Previous work: Hydraulic resistance

A number of serial and exponential approaches for the hydraulic resistance
of coarse porous media have been developed for stationary flow (Hannoura &
Barends, 1981). For non-stationary flow in coarse porous media the hydraulic
resistance I can be approximated by the extended Forchheimer equation with
an additional inertia term (Polubarinova–Kochina, 1962):

I = a vf + b |vf | vf + c
∂vf

∂t
(1)

where a, b and c are dimensional coefficients and vf is the flow velocity inside
the porous medium (filter velocity). A set of widely used theoretical formulae
for the Forchheimer coefficients a, b and c (see van Gent, 1992a) is presented
in this section. Alternative approaches can be found in literature. Especially
for coarse and wide graded rock material it might be necessary to determine
the resistance coefficients experimentally.

Kozeny (1927) derived the coefficient a for stationary flow by considering the
porous flow as capillary flow and the porous medium as a matrix of spherical
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particles of equal size:

a = Ka
(1− n)2

n3

ν

gd2
(2)

with porosity n, grain size d, non-dimensional coefficient Ka and kinematic
viscosity ν. Equation 2 has been confirmed theoretically and experimentally
by Carman (1937), Ergun & Orning (1949), Ergun (1952), Koenders (1985),
den Adel (1987), Shih (1990), van Gent (1992a) and by Burcharth & Andersen
(1995). Various coefficients Ka that have been derived by these authors are
listed in table 1. The large variability of the coefficient Ka should be noted.

The following approach for the resistance coefficient b, which includes the non-
dimensional coefficient Kb (see table 1), has been proposed by Ergun & Orning
(1949), Ergun (1952), Engelund (1953), Shih (1990), van Gent (1992a) and
Burcharth & Andersen (1995) for stationary flow:

b = Kb κo
1− n

n3

1

gd
(3)

The coefficient κo is 1 for stationary flow. If coefficient b accounts for viscous
and turbulent shear stresses the Forchheimer equation will be applicable not
only for combined laminar–turbulent flow, but also for fully turbulent flow
(van Gent, 1992a).

The hydraulic resistance of a uniform non-stationary flow is described by the
extended Forchheimer equation (equation 1). For oscillatory flow the addi-
tional resistance with regard to the convective acceleration has to be consid-
ered by a quadratic resistance term (Burcharth & Andersen, 1995). Hence,
the resistance coefficient b will be increased. Van Gent (1993) determined ex-
perimentally a coefficient κo of 1+7.5/KC for oscillatory flow. The Keulegan–
Carpenter number KC = ṽfT/(nd) characterises the flow pattern (with veloc-
ity amplitude ṽf and period T ) and the porous medium (particle size n and
diameter d). The inertia coefficient c will not be affected by the convective
acceleration and reads:

c =
1

ng

(
1 + KM

1− n

n

)
(4)

This approach has been used by Sollit & Cross (1972), Hannoura & McCorquo-
dale (1985), Gu & Wang (1991) and by van Gent (1992a). The added mass
coefficient KM will be 0.5 for potential flow around an isolated sphere and for
a cylinder it will be 1.0. In a densely packed porous medium the coefficient
KM cannot be determined theoretically; most probably it will tend to zero
(Madsen, 1974). Van Gent (1993) proposed the following empirical equation
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Table 1
Empirical coefficients and characteristic particle diameters for the Forchheimer co-
efficients a and b (stationary flow)

author characteristic dimensionless coefficients
particle diameter Ka Kb

Kozeny (1927); Carman (1937) deq
1) 180 — 3)

Ergun (1949, 1952) dn50
2) 150 1.75

Engelund (1953) deq —3) 1.8− 3.6

Koenders (1985) dn15 250− 330 —3)

den Adel (1987) dn15 75− 350 —3)

Shih (1990) dn15 > 1684 1.72− 3.29

van Gent (1993) dn50 1000 1.1

1) the equivalent diameter deq is the diameter of a sphere with mass m50

and specific density %s of an average actual particle: deq = (6m50/π%s)1/3

2) the nominal diameter dn50 is the diameter of a cube with mass m50 and
specific density %s of an average actual particle: dn50 = (m50/%s)1/3

3) authors proposed a different approach from equations 2 and 3

for the added mass coefficient of a rubble mound. His approach may lead for
small velocity amplitudes ṽf and long periods T to negative values of KM ,
which are physically meaningless and have to be excluded:

KM = max.

{
0.85− 0.015

n g T

ṽf

; 0

}

The hydraulic resistance of a rigid homogeneous, isotropic porous medium can
be determined for single phase flow by equation 1 and equations 2, 3 and 4.
Using the Forchheimer coefficients an averaged Navier Stokes equation (van
Gent, 1992a) reads:

c
∂~vf

∂t
+

1

n2g
~vf · grad~vf =−grad

(
p

%g
+ z

)
− a ~vf − b |~vf |~vf (5)

Neglecting the convective acceleration yields the extended Forchheimer equa-
tion (equation 1).

In case of a non-rigid porous medium the combined motion of fluid and parti-
cles has to be considered as two–phase flow. For an anisotropic porous medium
the Forchheimer coefficients may vary with flow direction. A spatial variation
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of Forchheimer coefficients has to be considered for inhomogeneous porous
media. The transition between areas with different resistance has to be de-
fined separately. Air entrainment leads to a compressible two–phase flow. A
modified Forchheimer equation for two–phase flow (air water mixture) in a
porous medium has been proposed by (Hannoura & McCorquodale, 1985).

1.2 Previous work: Pore pressure oscillations in rubble mound breakwaters

The wave propagation in a rubble mound breakwater has been investigated
by Hall (1991, 1994) in small scale experiments and by Buerger et al. (1988),
Oumeraci & Partenscky (1990) and Muttray et al. (1992, 1995) in large scale
experiments. Field measurements have been conducted at the breakwater at
Zeebrugge (Troch et al., 1996, 1998), prototype data, experimental data and
numerical results have been analysed by Troch et al. (2002).

The water surface elevations inside the breakwater and the amplitude of the
pore pressure oscillations decrease in direction of wave propagation exponen-
tially (Hall, 1991; Muttray et al., 1995). However, for larger waves Hall (1991)
stated constant maximum water surface elevations in the seaward part of the
breakwater core, which might be induced by ’internal wave overtopping’ (the
wave run-up on the breakwater core reaches the top of the core and causes a
downward infiltration from the crest). The water surface elevations, the pore
pressure oscillations and the wave set-up increase with increasing wave height,
wave period and slope cot α (Oumeraci & Partenscky, 1990; Hall, 1991). They
decrease with increasing permeability of the core material and with increasing
thickness of the filter layer (Hall, 1991).

The damping rate of pore pressure oscillations increases with wave steepness
(Buerger et al., 1988; Troch et al., 1996) and decreases with increasing distance
from the still water line (Oumeraci & Partenscky, 1990; Troch et al., 1996).
The following approach has been proposed by Oumeraci & Partenscky (1990)
and applied by Burcharth et al. (1999) and Troch et al. (2002) for the damping
of pore pressure oscillations:

P (x) = P0 exp
(
−Kd

2π

L′
x

)
(6)

with dimensionless damping coefficient Kd, amplitude of pore pressure oscil-
lations P0 (at position x = 0) and P (x) (at varying position x > 0) and wave
length L′ inside the structure. The exponential decrease has been confirmed
in field measurements (Troch et al., 1996).

Numerical models have been developed to study the pore pressure attenua-
tion inside rubble mound breakwaters. Van Gent (1992b) proposed a one–
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dimensional model where the hydraulic resistance of the porous medium has
been considered by Forchheimer type resistance terms. This model provides a
realistic figure of the internal wave damping for a wide range of wave condi-
tions and structures. Troch (2001) developed a numerical wave flume in order
to study the pore pressure attenuation inside a rubble mound breakwater (2-
dimensional analysis). An incompressible fluid with uniform density has been
modelled; the VOF method has been applied to treat the free surface. The
Navier Stokes equation has been extended by Forchheimer type resistance
terms for the porous flow model. However, the effect of air entrainments into
the breakwater core has not been considered. From comparison of numerical
results, prototype measurements and experimental results it has been con-
cluded that the wave damping inside a breakwater can be approximated by
an exponential function (Troch, 2001; Troch et al., 2002).

1.3 Methodology

This study is based on a theoretical analysis of the wave damping inside a
rubble mound breakwater. A simple universal concept for the wave height
decay inside the structure is presented.

Large scale experiments have been performed with a rubble mound breakwa-
ter of typical cross section in order to validate the theoretical results. A large
model scale has been selected to prevent scale effects especially with respect
to air entrainment. The hydraulic model tests were intended to provide in-
sight into the physical processes of the wave structure interaction, to confirm
the theoretical damping approach and to quantify non-linear effects that had
been neglected in the theoretical approach. The final objective is a simple
and relatively accurate description of wave damping inside a rubble mound
breakwater, which clearly reflects the governing physical processes.

It should be noted that the oscillations of water surface (wave height) and pore
pressure (’pore pressure height’) are closely linked. The wave kinematics in
porous media vary significantly in direction of wave propagation. However, the
local wave kinematics (at a specific location) are similar inside and outside the
porous medium. A linear relation between the wave height at a specific location
and the corresponding height of the pore pressure oscillations at a certain level
below SWL has been derived theoretically by Biesel (1950). Thus, a proper
description of the wave damping inside a breakwater should be applicable for
wave heights and pore pressure oscillations.

The analysis of the wave propagation inside the breakwater core has been
restricted to the breakwater part, where the water surface remains inside the
core during the entire wave cycle. Thus, only the breakwater core landward
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of the point of maximum wave run-up between the filter layer and the core
has been considered (figure 1). Further seaward the wave motion inside the
breakwater core will be affected by the various layers of the breakwater (with
varying permeability) and by the wave motion on the breakwater slope (wave
run-up and run-down).
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Fig. 1. Definition sketch for the analysis of wave damping inside the breakwater
core

The wave height at the point of maximum wave run-up between the core and
the filter layer (x0 = x(Ru,max)) has been considered as the initial wave height
H0. This procedure is different from previous studies, where the interface be-
tween filter layer and core has been considered as x0 (see for example Buerger
et al., 1988; Troch et al., 1996; Burcharth et al., 1999). With the proposed
definition of the position x0, the wave damping will not be affected by the
breakwater geometry but only by the hydraulic resistance of the core mate-
rial. The wave transformation in the seaward part of the breakwater and the
relation between incident wave height, wave run-up and initial wave height H0

are not subject of this paper. A homogeneous core material has been assumed
for the wave damping analysis. It has been further assumed that the wave
damping inside the core at x ≥ x0 is not directly affected by the wave trans-
formation at the seaward slope (except for the initial wave height H0). Thus,
wave damping inside the breakwater core and the infiltration process at the
slope have been considered as two separate and successive processes. The fol-
lowing terminology is used in this paper: Water surface oscillation and pressure
oscillation stand for the variation of water surface line and dynamic pressure
in time (at a specific location x). Wave height H refers to the vertical distance
between wave crest and trough at a specific location x for regular waves and
to the significant wave height Hm0 for irregular waves. Pressure height P cor-
responds to wave height (derived from pressure oscillations instead of water
surface elevations). Wave damping denotes the attenuation of wave height and
pore pressure height in direction of wave propagation (x–direction). Deviations
between observation and theoretical prediction of a parameter y are quantified
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by standard deviation σy, relative standard deviation σy/ȳ (with mean value
ȳ) and by systematic deviation µy (average deviation between observation and
prediction).

2 Theoretical approach for wave damping

The relationship between hydraulic gradient I and discharge velocity vf is
determined by the extended Forchheimer equation (equation 1). The wave
damping inside a rubble mound breakwater is closely linked to the hydraulic
resistance. Various relatively simple approaches for the wave damping inside
a rubble mound breakwater have been derived from equation 1.

The discharge velocity vf (x, z, t) has been replaced by a depth averaged
(z = 0 → −h) and time averaged (t = 0 → T ) velocity v̄f (x). The averaged
particle velocities inside the breakwater v̄f (x) can be approximated according
to Muttray (2000) by:

v̄f (x) = κv H(x) (7)

κv =
n

π

ω

k′h

[
1 +

2

π

(
1− cosh k′h

cosh 1.5 k′h

)]
(8)

with local wave height H(x), circular frequency ω = 2π/T , internal wave
number k′ = 2π/L′ (internal wave length L′), water depth h and porosity n.
The velocity coefficient κv [s−1] has been introduced for convenience only.

The hydraulic gradient Ī(x) (averaged over water depth and wave period)
corresponds to the averaged pressure gradient if the water depth is constant.
The gradient Ī(x) will be equal to the gradient of the pressure height ∂P̄ (x)/∂x
and to the gradient of the wave height ∂H(x)/∂x if the oscillations of water
surface and pore pressure (variation in time at a fixed location) are sinusoidal
and if possible variations of pore pressure oscillations over the water depth are
neglected:

Ī(x) = −grad

(
p̄(x)

%g

)
= − 2

π

∂P̄ (x)

∂x
= − 2

π

∂H(x)

∂x
(9)

With hydraulic resistance Ī(x) according to equation 9 and discharge velocity
v̄f according to equation 7 the Forchheimer equation (with ∂(κvH)/∂t = 0)
reads:

− 2

π

∂H(x)

∂x
= a κvH(x) + b (κvH(x))2 (10)
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The resulting damping function will be linear, quadratic or polynomial and
depends on the actual flow properties.

Linear damping: For laminar flow, the relation between hydraulic gradient
and discharge velocity is linear (Darcy’s law). A linear dependency between
wave height decay and wave height is called linear damping. If non-linear
hydraulic resistance is neglected equation 10 reduces to:

− 2

π

∂H(x)

∂x
= a κvH(x)

Separation of variables and integration leads to:

H(x) = exp
(
−π

2
a κv x + C

)

A linear damping thus results in an exponential decrease of wave height. The
integration constant C can be determined from the boundary conditions if the
initial wave height is H(x = 0) = H0:

C = ln(H0)

and the wave height decay due to linear damping is finally described by:

H(x) = H0 exp
(
−π

2
a κv x

)
(11)

Quadratic damping: The hydraulic gradient in fully turbulent flow is in
proportion to the discharge velocity squared. A wave height decay that de-
pends on the wave height squared is called quadratic damping. If the linear
hydraulic resistance is neglected equation 10 leads to the following quadratic
damping function:

− 2

π

∂H(x)

∂x
= b (κvH(x))2

H(x) =
1

π

2
b κ2

v x− C
with: C = − 1

H0

H(x) =
H0

π

2
b κ2

v H0 x + 1
(12)
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Polynomial damping: The hydraulic gradient can be described by the
Forchheimer equation if turbulent and laminar flow both occur in the porous
medium. A wave height decay that depends on the wave height and on the
wave height squared is called polynomial damping. Equation 10 leads to the
following polynomial damping function:

− 2

π

∂H(x)

∂x
= a κvH(x) + b (κvH(x))2

H(x) =
π a κv

2 exp
[
π

2
a κv (x + C)

]
− π b κ2

v

with: C =
2

π a κv

ln
[
π

2
κv

(
a

H0

+ b κv

)]

H(x) =
a(

a

H0

+ b κv

)
exp

(
π

2
a κv x

)
− b κv

(13)

The various damping functions are plotted in figure 2; the coefficients a and
b and the initial wave heights H0 that have been used are listed in table 2.
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Fig. 2. Linear, quadratic and polynomial damping

Two waves with initial wave heights H0 (at position x = 0) of 1 m and 0.5 m are
considered (see figure 2). The ratio of the local wave heights H(x) (at position
x > 0) will be constant (= 0.5) for linear damping. Quadratic damping will
cause a stronger wave height reduction for the larger wave and consequently,
the ratio of the local wave heights will vary (from 0.5 to 1). A similar effect
can be seen for polynomial damping, which of course depends on the relative
importance of the quadratic resistance.
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Table 2
Hydraulic resistance coefficients and initial wave heights1)

damping- coefficient coefficient initial wave height
function a [s/m] b [s2/m2] H0 [m]

linear 2/(π κv) – 0.5 – 1.0

quadratic – 2/(π κ2
v) 0.5 – 1.0

polynomial 1/(π κv) 1/(π κ2
v) 0.5 – 1.0

1) applied in figure 2

Table 3
Geometric properties of core material (van Gent, 1993)

equivalent diameter deq = 0.0385m deq = (6m50/π%s)1/3

nominal diameter dn15 = 0.023m dni = (mi/%s)1/3

dn50 = 0.031m

dn85 = 0.040m

non-uniformity dn60/dn10 = 1.51

porosity n = 0.388

3 Experimental investigations

3.1 Experimental set-up and test procedure

The experimental set-up in the Large Wave Flume (GWK) in Hanover con-
sisted of a foreshore (length 100 m, 1:50 slope) and a rubble mound breakwater
of typical cross section with Accropode armour layer, underlayer, core, toe pro-
tection and crest wall. The breakwater had 1:1.5 slopes and the crest level was
at 4.50 m above seabed (figure 3).

The breakwater core had a crest width of 1.35 m and a crest height of 3.75 m
(figure 3). The core material consisted of gravel (rock size 22/56 mm); the
geometric properties of the core material are summarised in table 3.

The resistance coefficients of the extended Forchheimer equation for oscillating
single phase flow inside the breakwater core are summarised in table 4 as
well as the their contribution to the total flow resistance. The coefficients
for the core material have been determined experimentally for stationary and
oscillatory flow conditions that were similar to the tested flow conditions inside
the breakwater.
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Table 4
Resistance coefficients for the core material and contribution to the total flow resis-
tance for oscillatory flow

laminar resistance turbulent resistance inertia force
coeff. contri- coeff. contri- coeff. contri-

a bution b bution c bution
[s/m] [%] [s2/m2] [%] [s2/m] [%]

0.89 11 22.9 83− 87 0.26 2− 6

The wave motion on the breakwater slope, which is governing the hydraulic
processes inside the structure, was measured including wave run-up, pressure
distribution on the slope and water surface elevations. The wave propagation
inside the structure has been determined from the water surface elevations
inside the core (wave gauges 22–26) and at the boundaries between different
layers (wave run-up gauges 2 & 3). The pore pressure distribution was mea-
sured inside the core (at three different levels: pressure cells 1–7, 8–13, 14–18)
and along the boundaries of the various layers (pressure cells 24–28 and 19–
23). The positions of the measuring devices at and inside the rubble mound
breakwater are specified in figure 3.

For wave height measurements inside the structure the wave gauges were pro-
tected by a cage against the surrounding rock material. Pressure sensors of
type Druck PDCR 830 were used. For pore pressure measurements, the pres-
sure cells were protected by a plastic shell.
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Fig. 3. Cross section of the breakwater model with measuring devices: wave gauges,
wave run-up gauges and pressure cells

A typical breakwater configuration has been selected for the model tests in
the GWK; the structural parameters (geometry and rock material) have not
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Table 5
Wave conditions tested

regular waves wave spectra
water wave incident initial incident initial
level period wave height1) wave height2) wave height1) wave height2)

h T , Tp Hi H0 Hi,m0 H0,m0

[m] [s] [m] [m] [m] [m]

2.50 4 0.23 – 0.81 0.15 – 0.78 0.24 – 0.78 0.15 – 0.34

2.50 5 0.26 – 1.06 0.19 – 0.98 0.25 – 0.98 0.19 – 0.49

2.50 6 0.27 – 1.09 0.23 – 1.04 0.25 – 1.04 0.21 – 0.60

2.50 8 0.28 – 1.25 0.28 – 1.06 0.26 – 1.06 0.27 – 0.77

2.50 10 0.60 0.59

2.90 3 0.22 – 0.60 0.11 – 0.21 0.22 – 0.47 0.11 – 0.18

2.90 4 0.23 – 0.70 0.14 – 0.31 0.23 – 0.64 0.14 – 0.29

2.90 5 0.25 – 0.70 0.18 – 0.38 0.24 – 0.68 0.18 – 0.37

2.90 6 0.26 – 0.73 0.22 – 0.46 0.26 – 0.71 0.22 – 0.45

2.90 8 0.27 – 0.78 0.27 – 0.61 0.26 – 0.73 0.26 – 0.58

2.90 10 0.27 – 0.81 0.31 – 0.73 0.27 – 0.58 0.31 – 0.57

1) at the toe of the breakwater
2) inside the breakwater core

been varied with respect to the large model scale. The wave parameters have
been varied systematically (see table 5).

Two water levels (h = 2.50 m and 2.90 m) have been tested. At the lower water
level (h = 2.50 m) most of pressure cells were permanently submerged, thus
providing a complete picture of the pore pressure oscillations. Wave overtop-
ping was practically excluded from these tests in order to avoid any infiltration
into the breakwater core from the breakwater crest. Therefore the wave heights
at water level h = 2.50 m and 2.90 m were limited to H = 1.00 m and 0.70 m,
respectively.

Tests were conducted with both regular and irregular waves. The regular wave
tests were used to provide insight into the hydraulic processes, but also to val-
idate the theoretical approaches and to develop empirical adjustments and
extensions. Tests with irregular waves (TMA–wave spectra generated from
JONSWAP–spectra) were used to check the applicability of regular wave re-
sults for irregular waves and if necessary to adapt it.

The wave conditions that have been tested are summarised in table 5. The
relative water depth h/L varied from 0.05 to 0.23 (kh = 0.35 to 1.45) and
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was thus transitional and close to shallow water conditions. The wave steep-
ness (H/L = 0.005 to 0.056) was significantly lower than the limiting wave
steepness for progressive waves ((H/L)crit ≈ 0.14) and also the relative wave
height (H/h = 0.09 to 0.4) was significantly lower than the critical wave height

((H/h)crit ≈ 0.8). The surf similarity parameter ξ = tan α/
√

H/L0 varied from

3.0 to 16.7. The ratio of intial and incident wave height H0/Hi was 0.35 to
1.14 (on average 0.68). Typical results of the hydraulic model tests are plotted
in figure 4 showing the water surface line and the pressure distribution inside
the breakwater just before maximum wave run-up.
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3.2 Experimental results

The wave height inside the breakwater core is plotted in figure 5 against
the distance x − x0 (see figure 1) for regular waves (wave periods T = 4 s,
8 s, nominal incident wave heights (in front of the breakwater) H = 0.25 m,
0.40 m, 0.55 m, 0.70 m and water level h = 2.50m). The initial wave height
H0 at position x0 varies with incident wave height and with wave period. For
shorter waves (T = 4 s) the wave height inside the breakwater core H(x)
approaches after a relatively short distance a value that is almost independent
of the initial wave height H0. Once this value is reached the wave damping
is significantly reduced. A similar effect (decreasing variation of local wave
heights and decreasing wave damping) can also be seen for longer waves (T =
8 s).

The varying ratio of the local wave heights (see figures 2 and 5) gives some
indication that the wave damping inside a breakwater will be better approx-
imated by a quadratic or polynomial damping function than by the linear
damping function. The applicability of the damping functions (equations 11,
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Fig. 5. Variation of wave height inside the core with distance x − x0 for various
incident wave heights and wave periods

12 and 13) for the wave height attenuation inside a breakwater is addressed
below. The velocity coefficient κv according to equation 8 was almost constant
(κv ≈ 0.25 s−1 with a standard deviation σκv = 0.011 s−1 (4.5%)) for the wave
conditions that have been tested (see table 5).

Linear damping: The linear damping approach (equation 11) uses a re-
sistance coefficient a, which corresponds to the Forchheimer coefficient a for
laminar flow. However, for turbulent flow the linear Forchheimer coefficient
will not be applicable. As the flow pattern inside a breakwater is governed
by turbulent flow the coefficient a has been replaced by a coefficient aeq that
takes laminar and turbulent resistance into account. The coefficient aeq has
been derived by a linearisation, i.e. integration and averaging of the actual
flow resistance. A rational approximation for the linearised resistance coeffi-
cient has been proposed by Muttray (2000):

aeq = a +
1

36
H̄

g b√
c h

[
1 +

k′h
4
− 2

5
tanh k′h

]
(14)

with average wave height H̄ inside the breakwater core and internal wave
number k′, which has been assessed from a linearised dispersion equation for
wave motion in porous media:

ω2 =
k′

nc
tanh(k′h) (15)

The coefficient aeq has been determined iteratively. A starting value for aeq

has been derived from equation 14 with H̄ = H0 (see table 5) and coefficients
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a, b and c according to table 4. The wave height inside the breakwater H(x)
has been determined subsequently from equation 11. The average wave height
H̄ (averaged over the width of the breakwater) has finally been used to re-
calculate aeq from equation 14.

The width of the breakwater core that has been tested varied at SWL between
3.9 m and 5.1 m (depending on the water level); a distance of 3 m has been
considered for the assessment of the average wave height H̄. For the wave
conditions tested the average internal wave height was about H̄ = 0.43 H0.
The resistance coefficient aeq varied between 1.2 and 3.6 and was on average
2 with standard deviation σa = 0.55 s/m (27%).

The applicability of the linear damping approach (equation 11) for the decrease
of wave height inside the breakwater core is demonstrated in figure 6.
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(d) Measurement & Prediction

h = 2.50m;  H = 0.25-0.70m
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H = 0.25 - 0.70mwave parameters:σa = 0.803s/m (38.8%)
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= 0.028m (18.2%)
= 0.975

Fig. 6. Linear wave damping approach: (a) damping coefficient a derived from mea-
surements, (b) wave decay for longer (T = 8 s) and shorter (T = 4 s) wave periods,
(c) wave decay vs. relative distance κvx and (d) comparison of measured and cal-
culated local wave heights H(x)

In figure 6 a the coefficient aeq that has been derived from equation 11 (with
measured wave heights H0 and H(x)) is plotted against the relative water
depth k′h. The coefficient aeq is on average 2 s/m; the standard deviation σa

is 0.803 s/m (38.8%). The theoretical assessment of the linearised resistance
coefficient aeq (iterative procedure) is confirmed by these results.

The differences between measured and calculated wave height decay (accord-
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ing to equation 11) are shown for a number of tests with shorter and longer
wave periods (T = 4 s and T = 8 s, Hi = 0.25 − 0.70 m and h = 2.90 m) in
figure 6 b (with aeq = 2 s/m and κv ≈ 0.25 s−1). The wave height attenuation
of longer waves (T = 8 s) is overestimated in the seaward part of the break-
water core (κvx ≤ 0.3) while the wave damping of shorter waves (T = 4 s) is
underestimated.

The wave height evolution inside the core is plotted in figure 6 c against the
relative distance κvx for all tests. The non-dimensional distance κvx is a gov-
erning parameter for the wave attenuation according to the linear damping
approach (equation 11). It can be seen that the wave heights in the landward
part of the breakwater core (κvx ≥ 0.6) are underestimated.

A direct comparison of measured and calculated wave heights inside the struc-
ture is plotted in figure 6 d for all tests. The measured wave heights are on
average 2.5 % smaller than the calculated wave heights; the standard deviation
is σH = 0.028 m (18.2%).

Even though the actual wave height decay inside the structure shows some
systematic differences as compared to the calculated decay according to equa-
tion 11, the linear damping approach provides a very simple and relatively
accurate approximation for the wave damping inside the breakwater core (see
figures 6 c,d).

Quadratic damping: The applicability of the quadratic damping approach
according to equation 12 for the wave height decay inside the breakwater core
is shown in figure 7.

The quadratic damping coefficient b that has been derived from equation 12
(with measured wave heights H0 and H(x)) is plotted in figure 7 a against the
relative water depth k′h. The coefficient b is increasing with k′h and has been
approximated empirically by equation 3 and κoKb = 3.4 k′h. The standard
deviation between observed and calculated coefficients b is σb = 42.4 s2/m2

(86.1%). The Forchheimer coefficient b = 22.9 s2/m2 that has been determined
experimentally (see table 4) is plotted for comparison.

The differences between measured and calculated wave height decay (accord-
ing to equation 12) are shown for a number of tests with shorter and longer
wave periods in figure 7 b (see also figure 6 b). The decrease of wave height is
plotted against κ2

v H0 x. The damping coefficient b varies with k′h; the wave
damping is therefore different for longer and shorter waves.

The wave damping inside the breakwater is plotted in figure 7 c against the rel-
ative distance bκ2

v H0 x for all tests. The non-dimensional distance bκ2
v H0 x is

a governing parameter of the quadratic damping approach (equation 12). The
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(d) Measurement & Prediction
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Fig. 7. Quadratic wave damping approach: (a) damping coefficient b derived from
measurements, (b) wave decay for longer (T = 8 s) and shorter (T = 4 s) wave peri-
ods, (c) wave decay vs. relative distance b κ2

v H0 x and (d) comparison of measured
and calculated local wave heights H(x)

wave heights in the seaward part of the structure (bκ2
v H0 x ≤ 0.5) are slightly

underestimated while the wave heights in the landward part (bκ2
v H0 x > 1)

are slightly overestimated.

A direct comparison of measured and predicted wave heights (equation 12) can
be seen in figure 7 d for all tests. The systematic deviation between measured
and calculated values is only 0.1%, the standard deviation is σH = 0.032 m
(21.1%). Major differences can be seen for larger wave heights (H(x) > 0.3 m),
therefore the goodness of fit is slightly less than for the linear damping ap-
proach.

If the Forchheimer coefficient b = 22.9 s2/m2 (see table 4) is applied as a
damping coefficient in equation 12 the wave height inside the structure will be
overestimated on average by 16.3%. The standard deviation between measured
and predicted wave heights will be increased to σH = 0.052 m (33.9%).

The wave decay inside the breakwater is qualitatively better reproduced by
the quadratic damping function than by the linear damping model (see fig-
ures 6 b and 7 b). However, the effect of wave length is apparently not properly
described by the velocity coefficient κv. This shortcoming will affect the re-
sults from the quadratic approach more than the results of the linear approach
(κv is linear in equation 11 and quadratic in equation 12). Even though the
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quadratic approach covers more of the physics of the wave damping process
inside a breakwater than the linear approach it does not provide a better
prediction of the wave height attenuation.

The shortcomings of the velocity coefficient κv can be partly compensated by
an empirical correction of coefficient b (with κoKb = 3.4k′h). For the present
case the relative standard deviation has been reduced from 33.9% to 21.1%.
However, the general applicability of such purely empirical procedure is un-
certain.

In the landward part of the breakwater the wave heights are underestimated
by the linear damping approach and overestimated by the quadratic approach.
Thus, a polynomial approach according to equation 13 that contains a linear
and quadratic contribution might be a better alternative.

Polynomial damping: The applicability of the polynomial damping ap-
proach according to equation 13 is shown in figure 8.
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Fig. 8. Polynomial wave damping approach: (a) linear damping coefficient a derived
from measurements, (b) quadratic damping coefficient b derived from measurements,
(c) wave decay inside the breakwater core and (d) comparison of measured and
calculated local wave heights H(x)

The linear and quadratic resistance coefficients a and b are plotted in figure 8 a
and figure 8 b against the relative water depth k′h. The Forchheimer coeffi-
cient a = 0.89 s/m (see table 4) has been applied as linear damping coefficient.
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The standard deviation between coefficients a that have been deduced from
measurements (with empirically corrected coefficient b) and the nominal value
a = 0.89 m/s is σa = 0.193 s/m (23.0%). The quadratic damping coefficient b
has been corrected empirically in order to compensate the effect of wave length
that is not sufficiently taken into account by the coefficient κv. Coefficient b
is determined by equation 3; as for the quadratic damping approach the coef-
ficients κo and Kb have been adjusted (κoKb = k′h). The standard deviation
between the modified coefficient b and the coefficients that have been derived
from measurements is σb = 19.9 s2/m2 (93.0%, with a = 0.89 s/m).

The wave decay inside the breakwater core (according to equation 13) is plot-
ted in figure 8 c against the relative distance (a + b κv H0) exp(0.5 π a κv x)−
b κv H0. The wave heights in the most seaward part of the structure are slightly
underestimated by the polynomial approach while the wave heights in the
landward part of the structure are approximated very well.

A direct comparison of measured and predicted wave heights is plotted in
figure 8 d. The calculated wave heights are on average 2.2% larger than the
measured values and have a standard deviation σH = 0.026 m (16.8%). The
largest wave heights (H > 0.4 m) in the most seaward part of the breakwater
core are underestimated.

If the experimentally determined linear and quadratic Forchheimer coefficients
(a = 0.89 s/m and b = 22.9 s2/m2) are applied the wave heights inside the
breakwater will be overestimated on average by 8.0%, the standard deviation
is increased to 0.046m (32.7%).

The polynomial approach according to equation 13 (with an empirical adap-
tation of the quadratic resistance coefficient b) provides a good approximation
of the actual wave height decay inside a breakwater. However, the accuracy
of the results is limited by the coefficient κv, which does not cover the effect
of wave length completely.

Extended polynomial approach: In order to consider the effect of wave
length on the wave damping properly an empirical coefficient κx is added to
the damping approach according to equation 13:

H(x) =
a(

a

H0

+ b κv

)
exp

(
π

2
a κv κx x′

)
− b κv

(16)

with: x′ = x− x0

For regular waves, the wave decay inside the breakwater core according to
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equation 16 is plotted in figure 9. The experimentally derived Forchheimer
coefficients a = 0.89 s/m and b = 22.9 s2/m2 (see table 4), an internal wave
number k′ (equation 15) and the following coefficient κx have been applied:

κx = 1.5 k′h (17)

The standard deviation between equation 17 and coefficients κx that have
been derived from measurements is σκx = 0.385 (34.3%)(figure 9 a). The local
wave heights inside the structure according to equation 16 are on average 0.6%
larger than the measured wave heights, the standard deviation is σH = 0.021 m
or 14.9% (figure 9 b). From figure 9 c it can be seen that the actual wave height
decay inside a breakwater core is well described by the extended polynomial
approach (equation 16).
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Fig. 9. Extended polynomial wave damping approach for regular waves: (a) coeffi-
cient κx vs. relative water depth k′h, (b) comparison of measured and calculated
local wave heights H(x) and (c) wave decay inside the breakwater core

For wave spectra, the decay of significant wave heights inside the breakwater
is plotted in figure 10. The extended polynomial approach according to equa-
tion 16 has been applied. The experimentally derived Forchheimer coefficients
a = 0.89 s/m and b = 22.9 s2/m2 and an internal wave number k′ have been
used as for regular waves. The coefficient κx has been slightly modified:

κx = 1.25 k′h (18)
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The standard deviation between equation 18 and coefficients κx that have been
derived from measurements is σκx = 0.226 or 25.9 % (figure 10 a). The calcu-
lated local wave heights inside the structure are on average 2.6 % smaller than
the measured wave heights, the standard deviation is σH = 0.039 m or 29.5 %
(figure 10 b). The relative wave height inside the structure Hm0(x)/H0,m0 is
plotted in figure 10 c against the relative distance. The wave heights in the sea-
ward part of the breakwater are slightly overestimated while the wave heights
in the landward part are slightly underestimated. In some of the experiments
with wave periods Tp = 5 s, 6 s and 8 s, the wave height measurements are
distorted by ”internal wave overtopping” (the wave run-up at the intersection
between filter layer and core reaches the crest level of the breakwater core
and generates an additional water surface for the wave gauges in this part of
the breakwater). Thus it appears as if these waves were propagating a certain
distance into the breakwater without significant damping. In all cases without
”internal wave overtopping” the decay of significant wave heights Hm0 inside
the breakwater can be reasonably assessed by equation 16 for irregular waves.
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Fig. 10. Extended polynomial wave damping approach for wave spectra: (a) coef-
ficient κx vs. relative water depth k′h, (b) comparison of measured and calculated
local wave heights Hm0(x) and (c) wave decay inside the breakwater core
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4 Concluding remarks

The wave damping inside a rubble mound breakwater has been studied theo-
retically and experimentally.

The theoretical concept has been based on the assumption of a homogeneous
core material. The wave kinematics have been derived from linear wave the-
ory and the wave length inside the structure has been determined from a
linearised dispersion equation for porous media. An average discharge velocity
has been considered (averaged over wave period and water depth). The hy-
draulic gradient has been approximated by the gradient of wave or pressure
height. It has been further assumed that the actual hydraulic resistance can
be approximated either by a linear, a quadratic or by a polynomial (linear
and quadratic) resistance. The effect of non-stationary flow (drag force) has
not been considered explicitly. Despite these assumptions and simplifications
the damping functions that have been derived from above analysis reflect the
governing physical processes better than available approaches such as equa-
tion 6.

The actual wave damping can be well described by a linear damping model
and the corresponding exponential decrease. The linear Forchheimer coefficient
a is not appropriate and has been replaced by an equivalent linear damping
coefficient aeq, which takes both laminar and turbulent losses into account and
has to be determined iteratively.

A quadratic damping model with a damping coefficient that corresponds to
the quadratic Forchheimer coefficient b does not provide any significant im-
provement while a polynomial approach appears to be very promising. The
polynomial approach is mainly advantageous due to the fact that Forchheimer
coefficients a and b can be directly applied as damping coefficients in the
polynomial model. It was found that the polynomial damping model under-
estimates the effect of wave length. Thus, an empirical correction has been
applied (extended polynomial approach, equation 16) that compensates the
shortcomings of the theoretical approach with respect to averaged discharge
velocity and linearised dispersion equation.

The extended polynomial damping model (with empirical corrections accord-
ing to equation 17 and equation 18) is applicable for regular and irregular
waves if the hydraulic resistance of the porous medium can be approximated
by the Forchheimer equation. Thus, the new approach is not restricted to cer-
tain breakwater geometries or wave conditions. However, in the case of wave
overtopping or ”internal wave overtopping” (infiltration into the core from
the breakwater crest) the pressure distribution inside the breakwater and the
internal wave decay may differ significantly from the proposed model.
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Houille Blanche; No. 2, pp. 157.

Bruun, P.; Johannesson, P. (1976): Parameters affecting stability of rubble
mounds. ASCE; Journal of Waterways, Harbors and Coastal Engineering
Division; Vol. 102, No. 2, pp. 141–165;

Burcharth, H.F.; Andersen, O.H. (1995): On the one-dimensional steady and
unsteady porous flow equations. Coastal Engineering; Vol. 24, pp. 233–257;
Elsevier Science Publishers B.V., Amsterdam.

Burcharth, H.F.; Liu, Z.; Troch P. (1999): Scaling of core material in rubble
mound breakwater model tests. Proceedings Coastal and Port Engineering
in Developing Countries (COPEDEC); Vol. 5, pp. 1518–1528; Cape Town,
South Africa.

Buerger, W.; Oumeraci, H.; Partenscky, H.W. (1988): Geohydraulic inves-
tigations of rubble mound breakwaters. ASCE; Proceedings International
Conference Coastal Engineering (ICCE); Vol. 21, pp. 15; Malaga, Spain.

Carman, P.C. (1937): Fluid flow through granular beds. Trans. Inst. of Chem-
ical Eng.; Vol. 15, pp. 150–166; London.

Engelund, F.A. (1953): On the laminar and turbulent flow of groundwater
through homogeneous sand. Transactions Danish Academy of Technical Sci-
ences; Vol. 3, No. 4, pp. 1.

Ergun, S.; Orning, A.A. (1949): Fluid flow through randomly packed columns
and fluidized beds. Journal of Industrial Eng. Chemistry; Vol. 41, No. 6,
pp. 1179–1189.

Ergun, S. (1952): Fluid flow through packed columns. Chem. Engrg. Progress;
Vol. 48, pp. 89–94.

Gent, M.R.A. van (1992): Formulae to describe porous flow. Faculty of Civil
Engineering; Communications on Hydraulic and Geotechnical Engineering;
Report No. 92–2; pp. 50; Delft University of Technology, Delft.

24



Gent, M.R.A. van (1992): Numerical model for wave action on and in coastal
structures. Communications on Hydraulic and Geotechnical Engineering;
Report No. 92–6; Delft University of Technology, Delft.

Gent, M.R.A. van (1993): Stationary and oscillatory flow through coarse
porous media. Faculty of Civil Engineering; Communications on Hydraulic
and Geotechnical Engineering; Report No. 93–9; pp. 61; Delft University of
Technology, Delft.

Groot, M.B. de; Yamazaki, H.; van Gent, M.R.A.; Kheyruri, Z. (1994): Pore
pressures in rubble mound breakwaters. ASCE; Proceedings International
Conference Coastal Engineering (ICCE); Vol. 24, No. 2, pp. 1727–1738;
Kobe, Japan.

Gu, Z.; Wang, H. (1991): Gravity waves over porous bottoms. Coastal Engi-
neering; Vol. 15, pp. 695–524; Elsevier Science Publishers B.V., Amsterdam.

Hall, K.R. (1991): Trends in phreatic surface motion in rubble-mound break-
waters. ASCE; Journal of Waterway, Port, Coastal, and Ocean Engineering;
Vol. 117, No. 2, pp. 179–187; New York;

Hall, K.R. (1994): Hydrodynamic pressure changes in rubble mound break-
water armour layers. IAHR; Proceedings International Symposium: Waves
– Physical and Numerical Modelling; pp. 1394–1403; Vancouver, Canada.

Hannoura, A.A.; Barends, F.B.J. (1981): Non-darcy flow: A state of the art.
Proceedings of Euromech 143; pp. 37–51; Delft.

Hannoura, A.A.; McCorquodale, J.A. (1985): Rubble mounds: Hydraulic con-
ductivity equation. ASCE; Journal of Waterway, Port, Coastal and Ocean
Engineering; Vol. 111, No. 5, pp. 783–799; New York.

Koenders, M.A. (1985): Hydraulic criteria for filters. Delft Geotechnics, un-
numbered Report; Estuary Filters.

Kozeny, J. (1927): Ueber kapillare Leitung des Wassers im Boden. Sitzungs–
Berichte der Wiener Akademie der Wissenschaft; Rep. 11a; pp. 271–306;
Wien.

Madsen, O.S. (1974): Wave transmission through porous structures. ASCE;
Journal of Waterways, Harbors and Coastal Engineering Division; Vol. 100,
No. 3, pp. 169–188.

Muttray, M.; Oumeraci, H.; Zimmermann, C.; Partenscky, H.–W. (1992):
Wave energy dissipation on and in rubble mound breakwaters. ASCE; Pro-
ceedings International Conference Coastal Engineering (ICCE); Vol. 23,
pp. 1434–1447; Venice, Italy.

Muttray, M.; Oumeraci, H.; Zimmermann, C. (1995): Wave-induced flow in a
rubble mound breakwater. Proceedings of Coastal and Port Engineering in
Developing Countries; Vol. 4, pp. 1219–1231; Rio de Janeiro, Brazil.

Muttray, M. (2000): Wellenbewegung an und in einem geschuetteten Wellen-
brecher — Laborexperimente im Grossmassstab und theoretische Unter-
suchungen. Ph.D. Thesis; Techn. University Braunschweig; Dept. of Civil
Engineering; pp. 282; Germany.

Oumeraci, H.; Partenscky, H.W. (1990): Wave-induced pore pressure in rubble
mound breakwater. ASCE; Proceedings International Conference Coastal

25



Engineering (ICCE); Vol. 22, pp. 14; Delft, Netherlands.
Polubarinova–Kochina, P.Y. (1962): Theory of groundwater movement.

Princeton University Press; Princeton, N.J.
Shih, R.W.K. (1990): Permeability characteristics of rubble material - new

formulae. ASCE; Proceedings International Conference Coastal Engineering
(ICCE); Vol. 22, No. 2, pp. 1499–1512; Delft, Netherlands.

Sollit, C.K.; Cross, R.H. (1972): Wave transmission through permeable break-
waters. ASCE; Proceedings International Conference Coastal Engineering
(ICCE); Vol. 13, pp. 1827–1846.

Troch, P.; de Somer, M.; de Rouck, J.; van Damme, L.; Vermeir, D.; Martens,
J.P., van Hove, C. (1996): Full scale measurements of wave attenuation in-
side a rubble mound breakwater. ASCE; Proceedings International Confer-
ence Coastal Engineering (ICCE); Vol. 25, No. 2, pp. 1916–1929; Orlando,
Florida.

Troch, P.; de Rouck, J.; van Damme, L. (1998): Instrumentation and pro-
totype measurements at the Zeebrugge rubble mound breakwater. Coastal
Engineering; Vol. 35, No. 1/2, pp. 141–166; Elsevier Science Publishers B.V.,
Amsterdam.

Troch, P. (2001): Experimental study and numerical modelling of pore pressure
attenuation inside a rubble mound breakwater. PIANC Bulletin; No. 108,
pp. 5–27.

Troch, P.; de Rouck, J.; Burcharth, H.F. (2002): Experimental study and nu-
merical modelling of wave induced pore pressure attenuation inside a rubble
mound breakwater. ASCE; Proceedings International Conference Coastal
Engineering (ICCE); Vol. 28, No. 2, pp. 1607–1619; Cardiff, Wales.

26


